TECHNICAL DATA

MQ-3 GAS SENSOR

FEATURES

- * High sensitivity to alcohol and small sensitivity to Benzine .
- * Fast response and High sensitivity
- * Stable and long life
- * Simple drive circuit

APPLICATION

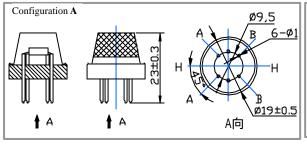
They are suitable for alcohol checker, Breathalyser.

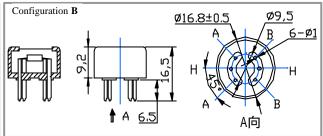
SPECIFICATIONS

A. Standard work condition

Symbol	Parameter name Technical condition		Remarks
Vc	Circuit voltage	5V± 0.1	AC OR DC
V_{H}	Heating voltage	5V± 0.1	AC OR DC
R_L	Load resistance	200K	
R _H	Heater resistance	33 ±5%	Room Tem
P _H	Heating consumption	less than 750mw	

B. Environment condition


Symbol	Parameter name	Technical condition	Remarks
Tao	Using Tem	-10 -50	
Tas	Storage Tem	-20 -70	
R _H	Related humidity	less than 95%Rh	
O ₂	Oxygen concentration	21%(standard condition) Oxygen concentration can affect sensitivity	minimum value is over 2%


C. Sensitivity characteristic

Symbol	Parameter name	Technical parameter	Remarks
Rs	Sensing Resistance	1M - 8 M (0.4mg/L alcohol)	Detecting concentration scope : 0.05mg/L—10mg/L
(0.4/1 mg/L)	Concentration slope rate	0.6	Alcohol
Standard detecting condition	Temp: 20 ±2 Humidity: 65%±5%	Vc:5V±0.1 Vh: 5V±0.1	
Preheat time	Over 24 hour		

D. Structure and configuration, basic measuring circuit

			$\frac{5}{1}$ $ c^1$ \wedge $+$ B	
	Parts	Materials	$A \longrightarrow B$	
1	Gas sensing layer	SnO ₂	4 H VC: S A A A B B	
2	Electrode	Au	AC on HATTER A OF B	
3	Electrode line	Pt	3 3 A B DC 5V THE TVO	.+
4	Heater coil	Ni-Cr alloy	±0.1v	'
5	Tubular ceramic	Al_2O_3	H → RL	
6	Anti-explosion network	Stainless steel gauze (SUS316 100-mesh)	7 A — (1) III - B	
7	Clamp ring	Copper plating Ni		
8	Resin base	Bakelite		
9	Tube Pin	Copper plating Ni	20mm 9 IH Fig.2	
			Fig. 1 —	

Structure and configuration of MQ-3 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed by micro AL₂O₃ ceramic tube, Tin Dioxide (SnO₂) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-3 have 6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

Electric parameter measurement circuit is shown as Fig.2

E. Sensitivity characteristic curve

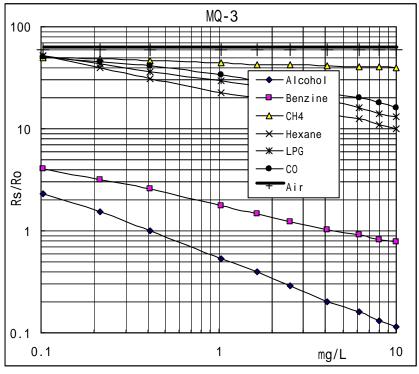


Fig.3 is shows the typical sensitivity characteristics of the MQ-3 for several gases.

in their: Temp: 20 Humidity: 65%, O₂ concentration 21% RL=200k

Ro: sensor resistance at 0.4mg/L of

Alcohol in the clean air.
Rs: sensor resistance at various concentrations of gases.

Fig.2 sensitivity characteristics of the MQ-3

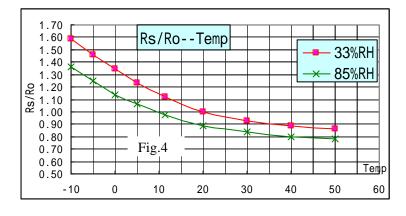


Fig.4 is shows the typical dependence of the MQ-3 on temperature and humidity.
Ro: sensor resistance at 0.4mg/L of Alcohol in air at 33%RH and 20
Rs: sensor resistance at 0.4mg/L of Alcohol at different temperatures and humidities.

SENSITVITY ADJUSTMENT

Resistance value of MQ-3 is difference to various kinds and various concentration gases. So when using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 0.4 mg/L (approximately 200ppm) of Alcohol concentration in air and use value of Load resistance that (R_L) about 200 K (100K to 470 K).

When accurately measuring, the proper alarm point for the gas detector should be determined after considering the temperature and humidity influence.